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Abstract

A ligand-independent cleavage (S1) in the extracellular domain of the mammalian Notch receptor results in what is
considered to be the canonical heterodimeric form of Notch on the cell surface. The in vivo consequences and significance
of this cleavage on Drosophila Notch signaling remain unclear and contradictory. We determined the cleavage site in
Drosophila and examined its in vivo function by a transgenic analysis of receptors that cannot be cleaved. Our results
demonstrate a correlation between loss of cleavage and loss of in vivo function of the Notch receptor, supporting the
notion that S1 cleavage is an in vivo mechanism of Notch signal control.
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Introduction

Intercellular communication is required for the proper specifi-

cation of cell fates in metazoans. Notch signaling defines a

conserved, pleiotropic cell-interaction pathway that controls cell

fates and consequently many differentiation, proliferation and

apoptotic events throughout development [1–3]. The central

element of this pathway is the transmembrane Notch receptor,

which triggers signaling through interaction with membrane-

bound ligands expressed on adjacent cells.

Multiple studies focusing on both the Drosophila and mammalian

Notch receptors have led to a model for Notch signaling that

involves ligand-dependent cleavages of both the extracellular and

intracellular domains of the receptor at the plasma membrane. A

series of cleavages eventually leads to the release of the

intracellular domain, which carries nuclear localization signals

[4], from the cell surface followed by its translocation to the

nucleus where it participates directly in transcriptional events [5–

8]. Cell culture experiments suggested that upon ligand stimula-

tion, an extracellular cleavage close to the membrane facilitates a

presenilin complex-dependent cleavage that releases the intracel-

lular domain from the cell surface [5,9–11]. Biochemical evidence

from mammalian studies has also revealed the existence of a

ligand-independent cleavage (S1 cleavage) in the extracellular

domain that is responsible for maturation of the protein [12]. This

cleavage was shown to depend on the furin protease, a member of

the proprotein convertase family of proteases [13]. S1 cleavage

apparently occurs in the trans-Golgi apparatus and results in the

creation of a heterodimeric form of the Notch receptor [12]. This

form of the receptor is composed of a 180 kDa cleavage product

(NEC) encompassing entirely extracellular sequences, and a 110–

120 kDa product (NTM) that includes a short piece of the

extracellular domain, and the entire transmembrane and intra-

cellular domains. Biotinylation experiments demonstrate that the

heterodimeric receptor is the dominant form of Notch located on

the cell surface, even though traces of the full-length protein can

clearly be detected [12–14]. The association between the two

subunits of the heterodimeric Drosophila and mammalian Notch

receptors appears to depend upon metal ions, by virtue of the fact

that chelating agents release the extracellular portion of the

receptor and can, in fact, activate downstream signaling [15].

In spite of these biochemical studies, the in vivo functional

significance and the generality of S1 cleavage remains unclear, and

indeed one study has even questioned its existence in Drosophila [16].

We sought to address the functional significance of S1 cleavage in

Drosophila by examining the in vivo and in vitro biological activity of

receptors that have mutated cleavage sites and are, thus, incapable

of being cleaved. Our studies involving the analysis of transgenic

flies indicate an in vivo correlation between S1 cleavage of the Notch

receptor and biological activity, supporting the significance of the S1

cleavage for Notch receptor function [12,13].

Materials and Methods

TAP purifications and mass-spectrometric analysis
The cloning of Notch in the TAP vectors, the TAP purifications

and the mass-spectrometric analysis were described in Veraksa et

al[17].

Notch mutant construction
Notch mutant forms were generated using the Stratagene site-

directed mutagenesis kit and primers with appropriately altered

amino acid codons. For the F1and F2 mutations, amino acids in

the sequences RKNK and RLKK, beginning at amino acids 1667

and 1637 were mutated to alanines, respectively. The mutations

were incorporated into wild-type full-length Drosophila Notch

(described in [18]) in both the pMT [19] and pUAST [20] vectors.
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Figure 1. Analysis of the N-terminus of the NTM fragment. (A) Whole cell extracts from the Drosophila cell lines S2, S2-Notch (S2N), Clone 8
(Cl.8), and Kc167 (Kc) were analyzed by Western blot using C17.9C6 antibody, an antibody specific for the intracellular domain of Notch. (B) Notch
polypeptides from Kc cells and embryos stably expressing a full length Notch construct containing a TAP tag at the C-terminus of its intracellular
domain were purified, resolved by SDS PAGE electrophoresis and stained with Coomassie Blue. Polypeptides resolving in the region marked 1 were
excised from the gel and submitted for sequencing by mass spectrometry. (C) Schematic representation of the full-length Notch protein and the
sequence surrounding the most N-terminal, trypsin-generated peptides (underlined) originating from region 1 and residing in the extracellular
domain. Amino acids shown in bold are putative S1 cleavage sites mutated in this study. EGF, EGF repeats; LNR, Lin-12 Notch repeats; TM,
transmembrane domain; ANK, ankyrin repeats.
doi:10.1371/journal.pone.0006728.g001
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Transient transfections
Transient transfections were performed in 6-well plates using

2 mg of DNA and Effectene reagent (Qiagen). Approximately

24 hours after transfection, protein expression was induced by

overnight treatment of the cells with 0.35 mM CuSO4.

Western blotting
Following treatment of cells with 0.35 mM CuSO4, cells were

washed once in 1xPBS and cell pellets were lysed in a detergent-

based buffer composed of 50 mM Tris (pH 7.4), 1.0% NP-40,

0.25% sodium deoxycholate, 150 mM NaCl. The lysis buffer was

supplemented with the Complete Protease Inhibitor Cocktail,

EDTA-free (Roche). Western blot analysis with the anti-Notch

C17.9C6 antibody (dilution 1:6000) was performed according to

standard protocol.

Biotinylation of S2 cells
S2 cells were seeded onto 10 cm tissue culture dishes treated

with concanavilin A.

Dishes were incubated in 0.5 mg/ml concanavilin A for 30

minutes and were then washed 3 times with 1 x PBS prior to seeding

of cells. Cells were transfected with 6 mg of DNA/plate using

Effectene reagent (Qiagen). The following day, cells were treated

with 0.35 mM CuSO4 and after 16 hours of treatment, cells were

biotinylated. All of the following steps were performed on ice. S2

cells were washed 3 times in 1 x PBS and then cells were incubated

Figure 2. Capacity of Notch, mutated at two putative cleavage sites, to generate the NTM fragment. (A) Schematic diagram illustrating
the Notch protein and the amino acid sequence encompassing the two predicted S1 cleavage sites, RLKK (F2) and RKNK (F1). Mutant Notch proteins
containing alanine substitutions of the F2 or F1 site, and the two F1-site deletions (F1(D1) and F1(D2)) are as indicated. (B) Western blot analysis of
lysates prepared from S2 cells transiently expressing wild-type Notch (wt-Notch) or the mutant Notch proteins. Untransfected cells are shown as a
control (Mock). The Western blot was probed with the C17.9C6 antibody.
doi:10.1371/journal.pone.0006728.g002
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in 2 mls of biotin (1.0 mg/ml in 1 x PBS pH 8.0) for 15 minutes on

a rocking platform. The biotinylation step was repeated. Following

biotinylation, 2 mls of 1 x PBS pH 8.0+100 mM glycine were

added to quench the reaction. Quenching occurred on a rocking

platform for 15 minutes. The quenching reaction was also repeated.

Cells were then washed 3 times in 1x PBS pH 8.0 and lysed in RIPA

buffer supplemented with the Complete Protease Inhibitor Cocktail,

EDTA-free (Roche).

Rescue of Notch null embryos
For assessing the rescuing ability of the F1 and F2 mutant Notch

proteins, da-GAL4 males [21] were crossed to the females of the

following genotypes: N54l9/FM7c ftz-lacZ, N54l9 UAS-N-WT/FM7c

ftz-lacZ, N54l9 UAS-N-F1/FM7c ftz-lacZ and N54l9 UAS-N-F2/FM7c

ftz-lacZ to obtain mutant Notch embryos and mutant embryos rescued

with wild-type Notch, F1 and F2, respectively. Embryos were first

scored for the absence of FM7c ftz-lacZ. Of those, 50% were wild-

type and therefore female, and the remaining 50%, having N54l9,

showed neurogenic phenotypes to varying degrees, depending upon

the transgene present. The neurogenic phenotypes were scored by

carefully examining neurons of the peripheral nervous system. These

neurons were central to diagnosing the extent of neurogenic rescue.

A minimum of 25 rescued embryos was examined for each genotype.

Thus, N54l9 mutant embryos were unambiguously identified by their

neurogenic phenotype, which was not completely rescued even by

wild-type Notch, and additionally confirmed by the absence of beta-

galactosidase staining.

Embryos were fixed in 4% formaldehyde (Polysciences) in

Embryo Fix Buffer (10 mM K2HPO4/KH2PO4 pH 6.8, 45 mM

KCl, 25 mM NaCl, 2 mM MgCl2) as an emulsion with heptane

on a shaking platform, devitellinized and stored in 100%

methanol. Embryos were permeabilized with Tri-PBS (phosphate

buffered saline with 0.2% Triton X-100) and incubated with rat

anti-ELAV antibody 7E8A10 (Developmental Studies Hybridoma

Bank, 1:100) and rabbit anti-beta-galactosidase (Molecular Probes,

1:1000) overnight at 4uC in Tri-PBS with 0.1% BSA and 8% goat

serum. After multiple washes, embryos were incubated with FITC-

conjugated goat anti-rabbit and Cy3-conjugated goat anti-rat

Figure 3. Rescue of the Notch neurogenic phenotype by the F1 and F2 mutants. (A–F) Ventro-lateral views of stage 13 embryos stained with
anti-ELAV antibody to visualize the extent of development of the nervous system. Anterior is to the left. (A) Wild-type embryos had a normal ventral
nerve cord and properly differentiated peripheral nervous system. (B) N54l9 embryos displayed a classic neurogenic phenotype consisting of
overproliferated ventral and peripheral nervous system. These defects were largely suppressed by expressing either the wild-type (C) or F1 mutant
Notch (D) receptors under the control of the da-GAL4 driver. In contrast, no significant rescue was observed when F2 mutant Notch was expressed (E).
Overexpression of the F2 mutant form in wild-type embryos did not result in nervous system defects (F). Arrows in A, C, D and F point to neurons of
the peripheral nervous system, which were used to assess the extent of rescue. A minimum of 25 embryos was examined for each genotype.
doi:10.1371/journal.pone.0006728.g003
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antibodies (Jackson Immunoresearch) at room temperature.

Embryos were mounted in Fluoroguard (BioRad), and the signal

was detected using Zeiss LSM510 confocal imaging system.

Fly Strains
All transgenic flies were generated in a w1118 background.

Germline transformation was performed by the MGH core facility

using standard methods.

Results

Analysis of the NTM fragment
Western blot analyses of the Notch receptor in different tissues,

developmental stages and species have long established the

existence of multiple cleavage products (e.g. [18]) The pattern

revealed by these analyses is variable and can differ both

qualitatively and quantitatively, depending on the protein source.

However, Western blot analyses of protein extracts from Drosophila

cells, expressing either a transgene encoding a full-length receptor

(S2 cells) or cells endogenously expressing Notch (Cl.8 and Kc167),

reveal a consistent and prominent pattern of Notch proteolytic

fragments. The 9C6 antibody, specific for the intracellular domain

of Notch, detects a variety of polypeptides including full-length

Notch and the prominent 120 kDa NTM fragment (Figure 1A).

This fragment appears even in the absence of ligand, as

demonstrated by its presence in S2N cells which do not express

Delta or Serrate [18], indicating that the 120 kDa NTM

polypeptide is the product of ligand-independent cleavage.

In an effort to precisely define the N-terminus of the Drosophila

NTM, we attempted to directly sequence this protein fragment but

were unable to obtain reliable sequence data, possibly due to

blockage of the N-terminus. We thus employed mass-spectromet-

ric analysis to estimate the position of the N terminus of NTM. A

full-length Notch construct containing a tandem affinity purifica-

tion (TAP) tag at the C-terminus was generated and stably

expressed in both Drosophila embryos and Kc167 cells. The TAP

tag allows for two-step protein purification [17,22,23]. TAP-

tagged Notch proteins were purified and resolved by SDS-PAGE,

and the region in the 120 kDa range (Figure 1, region 1) was

analyzed by mass spectrometry (LC-MS/MS) (Figure 1B). The

most N-terminal amino acid from the Notch polypeptides in

region 1 corresponded to residue 1658 of the extracellular domain

(Figure 1B,C), confirming that the Notch polypeptides in the

120 kDa molecular weight range are membrane bound. Given the

study by Logeat et al. [13] that linked S1 cleavage in mammalian

cells to the existence of a functional Furin cleavage site, it is

noteworthy that the most N-terminal Notch fragment in region 1

mapped close to, but not beyond, one of two putative sites as

defined by close homology to the Furin cleavage site consensus (see

below). This site, F2 (RLKK), is located at amino acids 1637

through 1640 (Figure 2). We note that full-length Notch was a

predominant isoform of Notch in the TAP experiments.

Mutation of the F2 site results in loss of NTM
Our approach to assess the functional significance of S1 cleavage

was to monitor the activity of Notch proteins that have been

Figure 4. Ability of mutant receptors to rescue Notch loss-of-function wing phenotypes. Transgenic flies overexpressing wild-type Notch (B),
F1 Notch (C) or F2 Notch (D) under the control of the wing-specific C96 Gal4 driver were crossed to N54l9/+flies (A). Wings from the female progeny of
these crosses are shown. A minimum of 50 wings was examined for each genotype. The expressivity of of N54L9 was not variable.
doi:10.1371/journal.pone.0006728.g004
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mutated such that cleavage is impaired. Using the results obtained

from the mass-spectrometric analysis as a basis to locate putative

Furin cleavage sites, we identified two regions containing basic

amino acids that conform to a Furin-target consensus sequence and,

if cleaved, would produce a fragment of approximately 120 kDa:

RLKK (amino acids 1637–1640) and RKNK (amino acids 1667–

1670). We note, however, that neither of these sites form a perfect

match to the Furin consensus sequence (Molloy et al., 1992; Walker

et al., 1994). These amino acids were mutated to alanines to

generate F2 Notch and F1 Notch, respectively (Figure 2A). We also

generated two deletion constructs, F1(D1) and F1(D2), that remove

the F1 cleavage site (RKNK) and surrounding residues. Western

blot analysis of S2 cells transiently expressing these constructs

demonstrated a large reduction in levels of the NTM fragment in

cells expressing the F2 protein but not in cells expressing Notch

proteins mutant for the F1 site (Figure 2B). This result suggests that

the RLKK sequence and not the RKNK sequence is the site of S1

cleavage, agreeing with the prediction from our mass-spectrometric

analysis (Figure 1), and a result also consistent with the observations

of Hu et al. [24] involving mutagenesis of the RLKK site.

Blockage of S1 cleavage results in a mutant receptor
In order to gain insight into the functional significance of S1

cleavage, we compared the ability of wild-type, F1 and F2 Notch

receptors to rescue the neurogenic phenotype associated with

zygotic loss of Notch function. When analyzed with the neuronal

marker ELAV, Notch null embryos (N54l9) display hypertrophy of

the central and peripheral nervous systems (Figure 3B) [25]. Under

the control of the ubiquitous da-Gal4 driver [21], wild-type, F1 and

F2 Notch transgenes were expressed in N54l9 mutant embryos, and

the resulting phenotypes were compared to the neurogenic

phenotype displayed by N54l9 embryos. Expression of wild-type

Notch or the F1 mutant receptor, which are readily cleaved,

significantly rescued the neurogenic phenotype (Figure 3C–3D).

The F2 mutant receptor, which displayed impaired cleavage in S2

cells (Figure 2B), did not rescue the neurogenic phenotype

(Figure 3E). We also examined the ability of the mutant receptors

to rescue the haploinsufficient, notched-wing phenotype resulting

from loss of one Notch allele (N54l9/+). Similar to the rescue

experiments in Notch null embryos, the wild-type and F1 receptors

suppressed the notched-wing phenotype, while the F2 receptor did

not (Figure 4). Interestingly, the F2 receptor can enhance the

hypomorphic notched-wing phenotype; however, the underlying

molecular mechanism causing this enhancement awaits further

study. We conclude that the form of Notch with impaired S1

cleavage (F2 Notch), does not behave as wild-type Notch, while the

form capable of being cleaved (F1 Notch) has a biological activity

that is indistinguishable from the wild-type receptor in these assays.

Figure 5. Localization of mutant receptors by immunostaining. S2 cells were transiently transfected with wild-type, F1 or F2 receptors. Cells
were immunostained with C17.9C6 antibody after permeabilization with triton X-100 (A,B,C) or were immunostained with C458.2H in the absence of
permeabilization (D,E,F). Representative cells from multiple fields are shown.
doi:10.1371/journal.pone.0006728.g005
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Loss of S1 cleavage impairs Notch trafficking
The original study which defined S1 cleavage was based on the

human Notch2 receptor and established that this cleavage is

sensitive to Brefeldin A and led to the suggestion that this cleavage

is necessary for the receptor to reach the cell surface [12]. This

notion was later confirmed and extended by the expression of

mammalian Notch receptors containing mutations in predicted

Furin cleavage sites [13]. In an effort to characterize further the

consequences of interfering with S1 cleavage of Drosophila Notch,

we examined the subcellular localization of the F2 and F1 mutant

Notch proteins and compared their distribution to that of the wild-

type receptor. S2 cells transiently expressing wild-type, F1 or F2

receptors were immunostained with antibodies that recognize

epitopes in the intracellular (9C6) or extracellular (2H) domains

(Figure 5). S2 cells do not express Notch endogenously, and

therefore the only proteins contributing to the immunostaining

were those introduced through transfection. Staining with the 9C6

antibody revealed the presence of all three proteins in the

cytoplasm (Figure 5A–5C). Treating nonpermeabilized cells with

the 2H antibody revealed staining around the periphery of cells

expressing wild-type and F1 Notch, but staining around the

periphery of cells expressing the F2 Notch protein was significantly

reduced (Figure 5D–5F). A lack of cell-surface accumulation was

also observed when F2 Notch was expressed in wing imaginal discs

(data not shown).

In an effort to examine the surface accumulation of the mutant

Notch receptors in a more quantitative manner, biotinylation

experiments were performed. These studies confirmed our

observation that trafficking of the full-length F2 receptor to the

cell surface was impaired, as shown by significantly reduced levels of

biotinylated F2 Notch (Figure 6A, streptavidin blot), even though

the F2 receptor was expressed to relatively high levels as assessed by

probing the Western blot with the 2H antibody (Figure 6A, 2H). For

technical reasons, the presence of the heterodimeric form of the

wild-type Notch receptor at the cell surface could not be confirmed

in this biotinylation experiment. Therefore, although a biotinylated

fragment of the appropriate size for NEC is observed in the

streptavidin blot (data not shown), its absence in the 2H blot

prevents confirmation that it is a Notch fragment. In order to assess

the integrity of the cell membrane in these experiments and, thus,

exclude the possibility of labeling cytoplasmic proteins, the

biotinylation status of the intracellular heat shock protein 70

(hsp70) was monitored. Hsp70 was not biotinylated, confirming that

the plasma membrane remained intact during the biotinylation

process (Figure 6B). These results demonstrate that mutating the

RLKK site, which has been shown to prevent S1 cleavage, reduces

the accumulation of Notch at the cell surface. They also offer an

explanation for the absence of F2 Notch activity in Drosophila, as its

inability to reach the plasma membrane would prevent it from

binding ligand on a neighboring cell.

Reduced levels of Furin do not impact S1 cleavage
Data obtained from mammalian cell culture studies are

consistent with the notion that S1 cleavage depends on Furin

activity. We, therefore, attempted to correlate S1 cleavage with the

activity of the two annotated Drosophila Furins using an RNA

interference approach in cultured cells, or by treating cells with the

mammalian Furin a1-PDX inhibitor [26]. Reduction in Furin1

and Furin2 activity, either independently or in combination, by

RNAi or by treatment with a1-PDX, did not reveal an obvious

reduction of S1 cleavage (Figure 7). In addition, we extended these

studies to an in vivo system by expressing the a1-PDX inhibitor in

Drosophila wings using different wing drivers. Expression of the

Furin inhibitor did not disrupt normal wing development (data not

Figure 6. Localization of mutant receptors by biotinylation. S2 cells were transiently transfected with wild-type, F1 or F2 receptors. Cells were
biotinylated and immunoprecipitated with the C458.2H antibody and proteins were immunoblotted with either C458.2H (1:500) (A, left side) or
streptavidin-HRP (1:3000) (A, right side). Biotinylation of the intracellular heat shock 70 protein was monitored as a negative control (B).
doi:10.1371/journal.pone.0006728.g006
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shown). These observations raise the possibility that an enzyme

other than Furin may be responsible for S1 cleavage in Drosophila.

However, the limits of the RNAi approach and the lack of clear,

Drosophila-specific positive controls prevent us from reaching such a

conclusion with certainty.

Discussion

Proteolytic events are increasingly recognized to play important

roles in the function of both the receptor and the ligand in Notch

signaling. The model of Notch cleavage that has developed from

the accumulated evidence of many different laboratories has

Notch being cleaved in its extracellular domain by Furin (S1) as it

traffics to the cell surface. Upon ligand interaction, Notch is again

cleaved in its extracellular domain by a metalloprotease (S2). This

proteolytic event facilitates a final presenilin-dependent cleavage

(S3) in the intramembrane region that is critical for nuclear

translocation of the intracellular domain and signaling. The

functional analysis of these events has been complicated by many

factors, given that the critical quantities of the signaling fragments

in vivo are, as a rule, below detectable levels, and their existence has

to be inferred indirectly. It is also possible that the current model

excludes other functionally relevant cleavages, as Western blot

analyses of the Notch protein invariably reveal a complex cleavage

pattern.

It is also important to note that some of the proteases and

substrates in the Notch signaling pathway are also implicated in

mutual interactions and lack stringent cleavage sites, making a

genetic analysis of these processes difficult. For example,

Kuzbanian is an ADAM metalloprotease that was shown to be

involved in cleavage of both the Notch receptor and its ligands

[1,27–30]. Kuzbanian is, itself, thought to be processed and

activated by the proprotein convertase Furin (Wang Yale Ph.D.

thesis). Presenilin, which is well documented to cleave the Notch

receptor, has been shown to cleave the receptor’s ligands [30]. It is

therefore difficult to interpret the genetic interactions between

such elements that display these complex relationships.

Given these difficulties, we reasoned that an in vivo functional

analysis of S1 cleavage of the Notch receptor was required. A

similar, cell culture-based approach was used in an S1 cleavage

study of the human Notch1 receptor [13]. This study showed that

loss of S1 cleavage was accompanied by a reduction in Notch

signaling and transport to the cell surface, consistent with our in

vivo functional data. The mass-spectrometric analysis we carried

out revealing the existence of NTM fragments both in Drosophila

embryos and in cultured cells, and the functional analysis we

Figure 7. Notch cleavage patterns after treatment with dsRNA. (A) S2 cells were incubated for 4 days with 50 mgs of dsRNA targeting beta-
lactamase (Con.), furin 1 (fur 1), furin 2 (fur2), furin 1+2 (1+2), presenilin (psn) or kuzbanian (kuz). After day 3 of dsRNA treatment, cells were transeintly
transfected with Notch and lysates were subjected to Western blot analysis using the C17.9C6 antibody. (B) RNA was collected from the cells after
completion of the dsRNA and transfection treatments and RT-PCR analysis was performed. RT-PCR using primers to rp49 served as a loading control.
doi:10.1371/journal.pone.0006728.g007
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performed are not in agreement with the conclusions of a study

claiming that S1 cleavage is neither essential for function nor even

present in Drosophila [8]. In this study, a region of Drosophila Notch

including and surrounding the RLKK (F2) and RKNK (F1) sites

was deleted (termed NBCLexA) and found to impair receptor

trafficking to the cell surface, which is in agreement with our

results for the F2 receptor. However, in the rescue experiments of

the neurogenic phenotype in N null embryos, NBCLexA did display

activity similar to wild-type Notch, in that it was able to suppress,

although incompletely, the neurogenic phenotype, implying that

some mutant receptor may actually be functional on the cell

surface. In our rescue studies in which we examined two

developmental contexts, the wing and the embryo, the F2 mutant

receptor did not rescue the loss-of-function phenotypes. In an

accompanying manuscript, Gordon et al. show that mutation of

the S1 cleavage site of the human Notch 1 receptor interfered with

the transport of this protein to the cell surface and its function,

consistent with our observations. In contrast, mutation of the

Notch 2 S1 cleavage site had no effect on transport or function.

Drosophila Notch is closest to the mammalian Notch 1 receptor,

but in the absence of structural data we cannot directly compare

the Drosophila receptor with its mammalian counterpart. Never-

theless, it is noteworthy that the results of Gordon et al regarding

Notch 1 are at face value consistent with our observations in

Drosophila, which establish, in vivo, a correlation between Notch

cleavage and activity. In the absence of structural data, however,

any structure/function approach, such as the one we adopted

here, suffers from the possibility that the functional changes we

observe in the mutant receptor (F2) are the result of incorrect

protein folding rather than inhibition of the S1 cleavage per se. This

caveat remains even though a similar group of mutations at the F1

site, just a few amino acids away from the F2 site, did not disrupt

activity of the Notch protein in vivo. It is noted, however, that

structural data obtained from an X-ray crystallographic analysis of

a small region of the human Notch 2 extracellular domain suggests

that amino acids within the F2 site are important for structural

contacts [31].

Given that the quantity of competent receptors on the cell

surface is a crucial parameter for the developmental outcome of

Notch signals, the existence of processing events such as the S1

cleavage provide cells with an important layer of Notch signal

control. Whether this cleavage, however, is used to modulate

Notch activity in all cells remains to be determined, but given all

available evidence, it seems likely that the functional significance of

the S1 cleavage may vary and dependent on the developmental

context.
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